Thermoresponsive Complex Coacervate‐Based Underwater Adhesive
نویسندگان
چکیده
منابع مشابه
Thermoresponsive Gels
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature ...
متن کاملBackbone-thermoresponsive hyperbranched polyethers.
A new type of materials, the backbone-thermoresponsive hyperbranched polyether, was successfully synthesized by proton-transfer polymerization of 1,4-butanediol diglycidyl ether and various triols, and the lower critical solution temperature (LCST) values can be readily adjusted from 19.0 to 40.3 degrees C by changing the hydrophilic/hydrophobic balance of BDE and triols.
متن کاملStable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments.
Underwater superoleophobic materials with low adhesion have been widely researched owing to their self-cleaning and anti-corrosive properties. In this study, polypyrrole (PPy) nanowire meshes have been successfully fabricated by in situ electrochemical polymerization on stainless steel mesh substrates in the presence of phosphate buffered saline as both an electrolyte and a dopant. PPy nanowire...
متن کاملA facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity.
By taking advantage of bacterial extracellular electron transfer behavior, a facile method was developed to fabricate oriented polypyrrole micro-pillars (PPy-MP) with nanoscale surface roughness. Microbes acted as a living conductive template on which PPy was in situ polymerized. The as-prepared PPy-MP exhibit the distinctive underwater low adhesive superoleophobicity which is attributable to t...
متن کاملDirect observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure
In this work we report on experiments aimed at testing the cavitation hypothesis [Varenberg, M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383-385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs). For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting conditions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2019
ISSN: 0935-9648,1521-4095
DOI: 10.1002/adma.201808179